Compact™ High Power Density™ (HPD™) Series Model 75 Driveshaft

Optimized High Power Density™ Design for Use in Commercial Euro 6 Vehicles with Engine Torques Above 3,200 Nm

The Spicer® Compact™ HPD™ Series brings together industry-proven features from across the Spicer family of propshafts to deliver the highest power density available.
Compact™ High Power Density™ (HPD™) Series Model 75 Driveshaft

Optimized High Power Density™ Design for Use in Commercial Euro 6 Vehicles with Engine Torques Above 3,200 Nm

The Compact™ HPD™ Model 75 Driveshaft provides extremely high power density for all applications of commercial vehicles. It combines an extended range of torque together with an increased lifetime compared to the standard Compact 2000™ Series.

The new patented axial cup retention together with an optimized yoke geometry features 30 percent higher torque and more than doubled lifetime compared with the strongest shaft of the Compact 2000 series at same rotational diameter.

Features

- Industry proven compact sealing system with double-lip Viton® seal
- Patented axial cup retention and optimized yoke geometry
- Hollow sliding
- High power density
- XS 200 flange

Benefits

- Enhanced reliability and improved life cycle
- 30 percent higher torque and significantly enhanced life cycle
- Reduced weight and axial friction forces
- 40 percent more torque at unchanged outer diameter
- Industrial standard

Torsional Rating

<table>
<thead>
<tr>
<th>Driveshaft Series</th>
<th>Functional Torque Limit Nm</th>
<th>Flange Connection</th>
<th>Bolt Hole ø mm</th>
<th>Bolt Circle ø mm</th>
<th>Rotational ø mm</th>
<th>Maximum Deflection Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPD 75</td>
<td>45,000</td>
<td>XS 200</td>
<td>17</td>
<td>172</td>
<td>206</td>
<td>27°</td>
</tr>
</tbody>
</table>

For additional configurations, contact Dana Application Engineering for specific application information.

Definition of Functional Torque Limit: The torque to which the driveshaft can be loaded without yielding or creating plastic deformation of any of the parts that adversely affect the driveshaft kinematics of durability.